A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
نویسندگان
چکیده
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-bylayer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
منابع مشابه
Exact Modeling and Simulation of Saturated Induction Motors with Broken Rotor Bars Fault using Winding Function Approach
Winding function method (WFM) provides a detailed and rather simple analytical modeling and simulation technique for analyzing performance of faulty squirrel-cage induction motors (SCIMs). Such analysis is mainly applicable for designing on-line fault diagnosis techniques. In this paper, WFM is extended to include variable degree of magnetic saturation by applying an appropriate air gap functio...
متن کاملA Review of Application of Signal Processing Techniques for Fault Diagnosis of Induction Motors – Part I
Abstract - Use of efficient signal processing tools (SPTs) to extract proper indices for fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The Part1 of the two parts paper focuses on Fourier-based techniques including fast Fourier transform and short time Fourier transform. In this paper, all utilized SPTs which have been employed for fault fete...
متن کاملApplication of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II
The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...
متن کاملDesign of an Active Approach for Detection, Estimation and Short-Circuit Stator Fault Tolerant Control in Induction Motors
Three phase induction motors have many applications in industries. Consequently, detecting and estimating the fault and compensate it in a way that the faulty induction motor satisfies the predefined goals are important issues. One of the most common faults in induction motors is the short circuit of the stator winding. In this paper, an active fault-tolerant control system is designed and pres...
متن کاملMagnetic Saturation Impacts on Fault Analysis of Squirrel-cage Six Phases Induction Motors using Winding Function Approach
Multiple coupled circuit modeling (MCCM) of squirrel-cage induction motors (SCIMs), or winding function approach is the most detailed and complete analytical model used to analyze the performance of faulty SCIMs. Already, in variate papers this approach was used to 3phases SCIMs, but this paper extends the above-mentioned model to 6phases SCIMs. Various simulations of variative faults are carri...
متن کامل